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Basic principles of identifying input-
output functions of systems and

forecasting
There are three major approaches to
forecasting — explanatory, time series,
machine learning

Explanatory forecasting assumes a cause
and effect relationship between the inputs
Into the system and its output. In this system
any change in inputs will affect the output of
the system in a predicable way.

Time series

In a special case machine learning such as
ANN, fuzzy sets theory offers relatively new
ways for improving forecast method.



Time series, B-J approach

Box and Jenkins developed a new modeling approach based on time
series analysis and derived from the linear filter known as AR or

ARIMA (AutoRegressive Integrated Moving Average) models. The
basic ARMA model of orders p, g (ARMA(p,q)) has the form:

yt :¢1yt—1 +¢2yt—2 + ... +gt +918;_1 +928t—2 + ...

The basic steps in Box-Jenkins Procedure are: (1) Identification, (2)
Estimation, (3) Diagnostic checking, (4) Forecasting. See next figure
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Flow chart of building an appropriate time series forecast model




Explanatory approach

The econometric approach adopted from early days of econometrics is
referred to as “AER” or Average Economic Regression and is
concerned with the functional form of the multiple regression model in
the form

Yo =By + BX +t BX, +U,

The formulation of an econometric forecasting model requires the
following steps:

- The choice the independent variables

- specification of a functional form of the model

- collection, and analysis of a data set
- model estimation and statistical testing
- evaluation of the model’s forecasting over the ex post period



Time series models, B-J approach
Quantitative Statistical and Fuzzy Time series Modeling Methods

In practice, there are many processes in which successive observations are dependent, I.e.
there exists an observational relation

R Z{(yt,: f(yt’yt—l)’(yt—l’ yt—2)’ }th ><Yt—l

The most often used model is, however, an explicit function, AR(1) process, (model)

f:Y,—>Y, Yo =TV 6) =dYa + 46

The AR(1) process is a special case of a stochastic process which is known as the mixed
autoregressive-moving average model of the order (p, ) which is abbreviated ARMA(p, q)
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All the above time series can be derived from linear combination of independent white noise
random variables {&,,&,_;,6 .-}

Y =1+ E Y& .= /u-l_zl)”jgt—j
i=0



Time series models
Fuzzy Time series Modeling Methods

In the case of fuzzy time series the fuzzy relational equations can be employed as the models.
Analogously to conventional time series models, it is assumed that the observation at the time t
accumulates the information of the observation at the previous time, i.e. there exists a fuzzy

relation such that _ _
Yo =VYia0 Rij (t,t-1) (4)

where V! €Y, y!, €Y., iel, jel
Then Yt is said to be caused by Yt-1 only, i.e.

Vi = W
or egivalemtly
Yia =Y,
and
Y. =Y. . oR(t,t -1
t t-1 ( ) (1)
Equation (1) is equivalent to the linguistic condition
if y., then v/ (2)

The first-order fuzzy time series model can be extended to p-order model in the form

Yo=Yy XYt—Z"'XYt—p) oR, (tt—p)
or equivalently

if y,and yp, ... andyy  then v/ (3)



An practical example (statistical approach)

Let as consider the 514 monthly inflation observations for the forty-three years 1956-1998
(see Figure 1). To build a forecast model the sample period for analysis y;,...,Y3,, Was

defined, and the ex post period y,,s,...,Ys;4 as validation data set.
http://neatideas.com/data/inflatdata. htm

Inflation

Figure 1 Natural logarithm of monthly
inflation from

Using time series data and traditional

statistical tools as the autocorrelation function

(ACF), the partial autocorrelation function y, =—01248y, ,
(PACF) and the Akaike Information Criterion

the model is estimated as



An practical example (fuzzy time series modelling)

In the fuzzification block, we specified input and output variables. The input variables
X1 as X1 =Y~ VYeo,t=34,.., and outputvariable x =y, -y, _, t=2,3,...
The variablle ranges are as follows: _() 75 < X, % _, <0.75

Next, we specified the fuzzy-set values of the input and output fuzzy variables. The fuzzy sets
numerically represent linguistic terms. Each fuzzy variable assumed seven fuzzy-set values as
follows: NL: Negative Large, NM: Negative Medium, NS: Negative Small, Z: Zero, PS:
Positive Small, PM: Positive Medium, PL: Positive Large.

Fuzzy sets contain elements with degrees of membership. Fuzzy membership functions can
have different shanes. The trianailar membershin fiinctions were chosen.
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An practical example (fuzzy time series modelling)

Fuzzification
process

Knowledge base

X1 S
—| Fuzzification -

block
Fuzzy rules
\ : x4
x,' Computation 7
t-1| output variables
Membership /'

functions

fuzzy-set values:

Defuzzification
block

Defuzzification

Denormalization

NL: Negative Large, NM: Negative Medium, NS: Negative Small, Z: Zero,

PS: Positive Small,

PM: Positive Medium, PL: Positive Large.

The input and output spaces we divided into the seven disjoint fuzzy sets. From membership
function graphs 4 ,, & shows that the seven intervals [-0,75; -0,375], [-0,375; -0,225],
[-0,225; -0,075], [-0,075; 0,075], [0,075; 0,225], [0,225; 0,375], [0,375; 0,75]

correspond to NL, NM, NS, Z, PS, PM, PL, respectively.
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Fig. 2 Fuzzy membership functions of fuzzy variables



An practical example (fuzzy time series modelling)

Next, we specified the fuzzy rule base or the fuzzy relation bank. The above specified interval
—0.75 <%, x_, <-0.75 portioned into seven non-uniform subintervals that represented
the seven fuzzy sets values NL, NM, NS, Z, PS, PM, PL assumed by fuzzy variables

Xa o X

The Cartesian product of these subsets defines 7 x 7 = 49 fuzzy cells in the input-output
product space R?. These fuzzy cells equal fuzzy rules. Thus, there are total 49 possible
rules and thus 49 possible fuzzy relations.

We can represent all possible fuzzy rules as 7-by-7 linguistic matrix (see next Figure ). The
idea is to categorize a given set of distribution of input vector X, =(X_,, % )into 7 x 7 = 49
klassses, and then represent any vector by the class into which it falls.

X, X,
— —
NL NM NS Z PS PM PL NL NM NS Z PS PM PL
1 8 15 22 29 3 43 1 8 15 22 29 36 43
NL 17 NL
NM 2 9 5 16 23 30 37 44 NM 2 9 16 23 30 37 44
NS 3 10 17 24 31 38 45 NS 3 10 17 24 31 38 45
- |4 11 18 25 32 39 46 4 11 18 25 32 39 46
XI-IT Z 6] 3 4 X"IT Z
5 12 19 26 33 40 47 5 12 19 26
P8 17 17 73 PS ‘
6 13 20 27 34 41 48 6 13 20 27
PM 193 PM
PL 7 14 |21 28 (35 42 49 PL 7 14 21 28
a) b)

Figure 4: Distribution of input-output data (x,_,, X, ) in the input-output product space

X, , xX, (a). Bank of fuzzy rules of the time series modelling system (b)



An practical example (fuzzy time series modelling)

Wy = Wy +77 (R — W) } if i=i Wy =Wy —77 (% — W) } if i
Wi <= Wy, +17 (R — W) —

Where i’ is the winning unit defined as

Wi —X H

HW, _XZH S‘ t

i .
IF Xi_1=PM THEN X/= ps



An practical example (fuzzy time series modelling)

When the input value, say x, , = x3,,.is applied to the model (4), the
output fuzzy value x/ = xJ,; can be calculated. It is possible to compute the

output fuzzy value x/ by the following simple procedure consisting of three

steps:
- Compute the membership function values u,; (x,_,),.... 15 (x,_,) forthe

input x, , using the membership functions in Figure?2
- Substitute the computed membership function values in fuzzy relations

(2), B3).

- Apply the max-min composition to obtain the resulting value of fuzzy
relations. x/

Following the above principles, we have obtained the predicted fuzzy

value for the inflation x, = x/,, =0.74933 .

The inflation values in the output \,J ,1=345, 346, ... are not very appropriate for a decision

support because they are fuzzy sets. To obtain a simple numerical value in the output
universe of discourse, a conversion of the fuzzy output is needed. This step is called

defuzzification. The simplest defuzzification scheme seeks for the value i‘, that 1s of middle

Membership in the output fuzzy set. Hence, this defuzzification method is called the Middle
of Maxima, abbreviated MOM. Following this method, we have obtained the predicted value

for the .7:‘345 =-0.15. The remaining forecast for ex-post forecast period 7 =346, 347, ... may

be generated 1n a similar way



An practical example (fuzzy time series modelling)

As a final point, let us examine what has been gained bv use of fuzzy
time series model over an ordinary AR(1) model for the output x,,.. For this
purpose, we have computed prediction limits on the one-step-ahead forecast
from the AR(1) model, and fuzzy time series model. The 95 percent interval
around the actual inflation value based on the statistical theory is

x3¢5ul-a/2oe(1+¢12)1/2=(—0.0442;0.05043)

where ¥, represents the forecast for period f =345 made atorigin 1= 344, 1 _

isa 100(1-c¢ / 2) percentage of the standard normal distribution, and f_':'-'_, an zstimate of the
standard deviation of the noise. An intwitive method for constructing confidence intervals for
fuzzy ime series model 15 simply the defuzafication method First of haxima and First of
Ninima to obtain the pradiction limitz on the one-stepahead forscast In our sxample the
“confidence” interval for fuzzy time series value X s = 0.00312 is (-0-302356 to 0.3088).
The actual value for the AR(1) model dozsnot fall within the forecast interval, and

moreover, it=s s1zn 15 oppostie to the forecast value =pn.
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