
Dependency Injection
Containers and Caching

Jiří Matula

Dependency Injection

Passing responsibility of object for initialization of

dependent objects.

class DependentClass {

private $object;

public __construct(Object $object) {

$this->object = $object;

}

}

class DependentClass {

private $object;

public __construct() {
$this->object = new Object();

}

}

DI Containers Generally

 It facilitates object initializations.

 Increasing popularity of dependency
injection.

 They becomes a core part of bigger
frameworks and projects (e.g. Symfony,
Spring and others).

Examples:

Pimple, PHP-DI, Google Guice.

DI Container Sequential
Diagram

Features of DI Containers

 Recursive dependency injection,

 autowiring,

 responsibility for application configuration,

 lazy initialization of objects,

 substitution for some design patterns.

Cache - basic example

if (cache_key_exists(Object::class)) {

$object = cache_fetch(Object::class)

} else {

$object = new Object();

cache_store(Object::class, $object)

}

General idea

Let the container fully control lifecycle of class

instances regardless the way how they are

initialized.

Sequence Diagram of
Concept

Initialization process

Persistent Persistent

Non-persistent

Not serializable

Initialization process

Non-persistent Non-persistent

Persistent

Not serializable

Discussion

Advantages:

+Caching of objects is not directly functional
part of a class.

+ Improves reusability and testability of
classes.

+Application does not have to be fully
initialized with every incoming request.

Disadvantages:

– Persistent class must not contain static and
non-serializable class members.

– Developer has to be aware of application
architecture, respectively class composition.

Experiment

Experiment
Non-persistent container Persistent container

Time taken for

tests

15.586 seconds 13.050 seconds

Complete requests 5 000 5 000

Failed request 55 (invalid length) 0

Request per

second

320.81 383.15

Time per request

(mean)

3.117 milliseconds 2.610 milliseconds

Percentage of the

requests served

within a certain

time (ms)

50 % 13

66 % 13

75 % 18

80 % 22

90 % 25

95 % 27

98 % 30

99 % 32

100 % 45 (longest time)

50 % 11

66 % 11

75 % 15

80 % 18

90 % 22

95 % 23

98 % 25

99 % 27

100 % 56 (longest time)

Summary

By passing responsibility of object for
construction, testability of classes is
improved (mocking objects).

Lifecycle of instances is controlled by
container, hence initialization and
configuration is not up to responsibility of
classes.

By following principles of DI it makes novice
developers team more competitive.

Thank you for your
attention.

Mgr. Jiří Matula
University of Ostrava

Faculty of Science

Department of Informatics and Computers

jiri.matula@osu.cz

